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Abstract

The dimensionless equations of motion are derived based on the Mindlin plate theory to study the transverse vibra-
tion of thick rectangular plates without further usage of any approximate method. The exact closed form characteristic
equations are given within the validity of the Mindlin plate theory for plates having two opposite sides simply sup-
ported. The six distinct cases considered involve all possible combinations of classical boundary conditions at the other
two sides of rectangular plates. Accurate eigenfrequency parameters are presented for a wide range of aspect ratio 5 and
thickness ratio ¢ for each case. The three dimensional deformed mode shapes together with their associated contour
plots obtained from the exact closed form eigenfunctions are also presented. Finally, the effect of boundary conditions,
aspect ratios and thickness ratios on the eigenfrequency parameters and vibratory behavior of each distinct cases are
studied in detail. It is believed that in the present work, the exact closed form characteristic equations and their asso-
ciated eigenfunctions, except for the plates with four edges simply supported, for the rest of considered six cases are
obtained for the first time.
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1. Introduction

Rectangular plates are commonly used structural components in many branches of modern technology
namely mechanical, aerospace, electronic, marine, optical, nuclear and structural engineering. Thus, the
knowledge of their free vibrational behavior is very important to the structural designers.

The published work concerning vibration of such plates is abundant, however, the vast majority of it is
based on thin plate theory. An excellent reference source may be found in the well-known work of Leissa
(1969) and his subsequent articles (Leissa, 1977, 1978, 1981a,b, 1987a,b) published in Vibration Digest from
time to time. His remarkable work on the free vibration of thin rectangular plates (Leissa, 1973) also pre-
sent comprehensive and accurate analytical results for 21 distinct cases which involve all possible combina-
tions of classical boundary conditions.

The thin plate theory neglects the effect of shear deformation and rotatory inertia which result in the
over-estimation of vibration frequencies. This error increases with increasing plate thickness. Improving
on the thin plate theory Mindlin and co-workers (Mindlin, 1951, 1956) proposed the so-called first-order
shear deformation theory for moderately thick plates and incorporated the effect of rotatory inertia. The
first-order shear deformation plate theory of Mindlin, however, requires a shear correction factor to com-
pensate the error resulting from the approximation made on the nonuniform shear strain distribution.

Solutions of the eigenvalue problems of thick plates have been represented using several different
approximate methods over the years. Dawe and Roufaeil (1980) treated the free vibration of Mindlin rec-
tangular plates by the Rayliegh—Ritz method. They used the Timoshenko beam functions as the admissible
functions of the plate. Liew et al. (1993a, 1995a) investigated the free vibration of Mindlin rectangular
plates, respectively, by using two dimensional polynomials and one-dimensional Gram—Schmidt polynomi-
als as the admissible functions of the plate in the Rayliegh-Ritz method. Cheung and Zhou (2000) devel-
oped a set of static Timoshenko beam functions as the admissible functions to study the vibration of
moderately thick rectangular plates by the Rayliegh-Ritz method. The finite element, finite strip, finite
layer, collocation and superposition methods have also been used, respectively, by Al Janabi et al.
(1989); Dawe (1987); Cheung and Chakrabarti (1972); Mikami and Yoshimura (1984) and Gorman
(1996) to study the eigenvalue problems of thick plates. Moreover, some investigations on three-dimen-
sional vibrations of rectangular plates have been reported by Srinvas et al. (1970); Wittrick (1987); Liew
et al. (1993b, 1994, 1995b); Liew and Teo (1999). More recently Zhou et al. (2002) investigated the free
vibration of rectangular plates with any thickness using three-dimensional analysis and selecting the Cheby-
shev polynomials as the admissible functions of the plate in the Ritz method. A beneficial literature review
on the vibration of thick rectangular plates have also been furnished by Liew and Xiang (1995). Other
works of interest are Chen et al. (1997); Lim et al. (1998a,b); Malik and Bert (1998); Gorman (2000)
and Liew et al. (1998).

The exact characteristic equations for rectangular thin plates having two opposite sides simply supported
can be found in the original work of Leissa (1973). No such equations about thick plates are available in the
literature. To fill this apparent void, the present work is carried out to provide the exact characteristic equa-
tions for the six cases having two opposite sides simply supported. The six cases considered are namely S—S—
S-S, S-C-S-S, S-C-S-C, S-S-S-F, S-F-S-F and S-C-S-F plates. The integrated equations of motion in
terms of the stress resultant are derived based on Mindlin plate theory for thick rectangular plates with con-
sideration of transverse shear deformation and rotatory inertia. The frequency parameters calculated from
the exact characteristic equations are extensively tabulated for all six cases, covering wide ranges of plate
aspect ratios x and relative thickness ratio 6. These results may serve as benchmark solutions for validating
approximate two-dimensional theories and new computational techniques in future. Three dimensional
mode shapes and their associated contour plots for # =2 and 6 = 0.1 are presented for each of the bound-
ary conditions. The exact transverse deflections derived for each of the six cases also facilitate the study of
forced vibration of Mindlin plates which will be dealt with in subsequent paper.
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2. Governing equations and their dimensionless forms

Consider a thick rectangular plate of length a, width b, and uniform thickness /%, oriented so that its
undeformed middle surface contains the x; and x, axis of a Cartesian co-ordinate system (xy,X,X3), as
shown in Fig. 1.

The displacements along the x; and x, axes are denoted by U; and U,, respectively, while the displace-
ment in the direction perpendicular to the undeformed middle surface is denoted by Us. In the Mindlin
plate theory, the displacement components are assumed to be given by

Ul - _x3lpl(xl7x27t)a U2 = —X3Wz(x1ax27f)> U? = lp3(xl7x27t)a (la7bac)

where ¢ is the time, V3 is the transverse displacement, y; and , are the slope due to bending alone in the
respective planes. Using the displacement field given in Eq. ((1a)—(c)), the tensorial components of the
strains may be expressed as

&1 = —x3l//1,17 & = —x3'»02‘,2a &3 =0, (2a,b,c)

e = —%(%72 Yo )%, E3 = _%(‘//1 —Y31), 3= —%(Wz —¥30)- (2d.e.f)

Based on the strain—displacement relations given in Eq. (2) and assuming a stress distribution in accord-
ance with Hook’s law, as well as neglecting the stress—strain relations involving &35 the resultant bending
moments, twisting moments, and the transverse shear forces, all per unit length in terms of v, ¥, and
/3 are obtained by integrating the stresses and moment of the stresses through the thickness of the plate.
These are given by

My = =D, +wW,), Mxn=-=DW,,+W,,), (3a,b)
M = —%(1 =) (12 +¥0,), (3¢)
0 = _KZGh(‘/h - %,1)» 0, = _KZGh(Wz - ‘//3,2)a (3d)

where v is the Poisson’s ratio, G = E/2(1 + v) is the shear modulus, D = Eh*/12(1—V?) is the flexural rigidity
and K is the shear correction factor to account for the fact that the transverse shear strains are not truly
independent of the thickness coordinate.

The governing equations of motion may now be derived from the three-dimensional stress equations of
motion which are written as

o111 01y + 0133 = PUb 0211 + 00y + 0233 = pU>, (4a,b)

Fig. 1. A Mindlin plate with co-ordinate convention.
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0311 + 03 + 0333 = pUs, (4c)

where p is the mass density per unit volume. The first two are multiplied by x3 and then integrated through
the thickness, making use of equations (3) and the fact that there are no shear forces applied to the faces of
the late while the last equation is integrated through the thickness, making use of the fact that
033| iy = —q(x1,x2,¢) is the applied load. Thus the integrated equations of motion in absence of the applied
load and assumption of the free harmonic motion in terms of the stress resultants are given by

1
My +Mpr— 0, = zﬂh3 o™y, My +Mpr— 0, = 2ph3 oYy, (5a,b)

011+ 0= —phar ;. (5¢)

For generality and convenience, the coordinates are normalized with respect to the plate planar dimen-
sions and the following nondimensional terms are introduced:

X X3 h a , [ph

X, =2, x,=22, §==, p=-, B= = 6
1 a ) 2 b ) a? n b7 ﬁ wa D) ( )
where f§ is the frequency parameter. The stress resultants may then be written in dimensionless form as

- - - . M ~ ~ ~ , M

My =- (lﬂu + W?‘//z,z)em = ﬁa, My =— (’Wz,z + lel,l>elwt = %av (7a,b)

~ ~ ~ wr M I—v

M =—w (’1!//1,2 + lﬁz,l)e"‘t =—2a, (wn= (7c)

D 2
A 7 7 i Q A 7 7 i Q
0=~ (I —sy)e” =55 0r= (i =iy, ) = 52 (Tde)

where comma-subscript convention represents the partial differentiation with respect to the normalized
coordinates and

lZl<)(l7)(2) = Wl(xlax%t)eiiw[v IZZ(XUXZ) = lﬁz(xl’x% t)eiiwt’ (837 b)

e—iwt

&3(X],X2) = W3(X],X2,f)

Substitution of the dimensionless stress resultants from expressions (7a)—(7e) into Egs. (5a)—(5c¢) leads to

(8¢)

- - Vs /= - 12K% /- - B

i+ '72‘?1,22 "‘v_? ('//1,11 + '7‘#2,12) T (Wl - ‘P3,1) = Ty v Wl» (9a)
: oy - : 12K - - N

Yo + ’72%,22 + V_IW(Wl,lz + ’7%,22) T (‘pz - ﬂ‘ﬁs.z) = 127, %7 (9b)
- - - - B’ -

Vi + ’72%,22 - (‘pu + ’7%,2) = _m%a (9¢c)

where v, = (1 + v)/2. The three dimensionless governing equations (9a)—(9c) may be solved by representing
the three dimensionless functions y/,, ¥, and y; in terms of the three dimensionless potentials W, W, and
W5 as follow:

lzl =C\Wi1+CaWay — Wiy, l//2 CinWis+ ConWos + Wiy, (10a,b)
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Yy =W+ W, (10c)
where
o2 o2
Cl=1--—2, C=1-—L 11a,b
1 Vlag’ 2 V]OC%7 ( a, )
2 | o2 2\ 2 2 '
, . Bl 5 1 4
=< )+ (=) (—-1) += 1lc,d
TN <K2v1+ ) \/<1z> <K2vl Wik (He.d)
12K? 12K [ p*6*
“gzﬁzaz G =5 (144K2v1_1)' (1le)

Based on these dimensionless potentials, the governing equations of motion may now be expressed as
Wi+ 0 Win=—aWy, Way+n*Wan = —u5Ws, (12a,b)
Wi + 10" Wimn = - Ws. (12¢)
One set of solutions to Eqgs. (12a)—(12c) are
Wy = [4; sin(LX>) + 4 cos(AX,)] sin(u. X 1) + [B1 sin(41.X2) + B, cos(41.X»)] cos(p, X 1), (13a)
Wy = [A3 sinh(A,X3) 4+ A4 cosh(AaX )] sin(p,X 1) + [B; sinh(4,X,) + By cosh(A:X3)] cos(u,X1),  (13b)
W3 = [Assinh(A3X;) 4+ Ag cosh(43X ;)] cos(u3X 1) + [Bs sinh(43X5) + Bg cosh(43X,)] sin(us X 1),  (13c¢)
where 4; and B; are the arbitrary constants. /;, and p; are also related to the «; by
0= A, =g~ A, 05 =4 -0 (14a,bc)

The details of existence of the other sets of solutions are given in Appendix A. It should be emphasized
that, as shown in Appendix A the set of solutions given by Eqgs. (13a)—(13c) are based on the assumption
that

>0, 05<0, o5<0. (15)

3. Two opposite edges simply-supported

For the sake of definiteness, the dimensionless boundary conditions will be given below for an edge par-
allel to the X,-normalized axis (for example, the boundaries X; = 0 or X; = 1). For a simply-supported edge

M11:¢2:¢3:0 (1621)
for a free edge
MIIZMU:@]:O (16b)

and for a clamped edge

fﬂl = ‘Lz = ‘/~/3 =0. (16c)
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Corresponding boundary conditions for the edges X, = 0 and X, = 1 are obtained by interchanging sub-
scripts 1 and 2 in Egs. (16a)—(16c).

On the assumption of a simply-supported edge at both X; =0 and X; = 1, Egs. (13a)—(13c) may be writ-
ten as

Wi = [A;sin(A41X2) + 4z cos(A1X2)] sin(mnX ), (17a)
WZ = [A3 Sil’lh(}uzXz) + A4 COSh(}QXz)] sin(mnXl), (17b)
W3 = [As sinh(13X,) + 46 cosh(A3X,)] cos(mnX ), (17¢)

where m = 1,2,. ... Introducing Eqgs. (17a)—~(17¢) in Egs. (10a)—-(10c) and substituting the results into the
three appropriate boundary conditions along the edges X, =0 and X, = 1 lead to a characteristic determi-
nant of the six order for each m. Expanding the determinant and collecting terms yields a characteristic
equation. The characteristic equations for the six cases are listed below.

Case 1. S-S-S-S

sin ; sinh 4, sinh 43 = 0. (18)
Case 2. S-C-S5-S
(C] — Cz)/lz tan l] tanh ;uz — 172&3((:111 tanh /12 — Cz/lz tan }1) tanh )v3 =0. (19)

Case 3. S—-C-S-C
2(Cy — Cy)* u?23[Cala(cosh Jy cosh A3 — 1) sin 4, — CyAi(cos Ay cosh /3 — 1) sinh /]
+[(cr = o)t + (223 - cfzf)n“/@ sin /, sinh /, sinh /3

— 2C1C2n4l§}v1i2(cos Z1cosh Ay — 1)sinh 43 = 0. (20)
Case 4. S—S—-S-F
CZ;LIL]LZ tanh /lz + C112L3L4 tan il — 2(C1 — Cz)ﬂzluz/ll)»zig.(l — V) tanh /13 = 07 (21)

where
L= (C, — D23 — (Cy+ D, Ly =025 — v,
Ly = (Cy — D23 — (Co+ V)i, Ly = 2 + vl
Case 5. S—F-S-F
4(Cy — Cz)nz,uzllxlzig[cl/12L3L4(cos J1cosh A3 — 1) sinh 2, — Cy4,L Ly(cosh A, cosh 23 — 1) sin 4;](1 — v)
+ [4(c1 — Ot 22 =) + G — c%nggLﬂ sin 4, sinh 4, sinh /5
— 2C1CyA1 2oL LyLsLy(cos Ay cosh 2, — 1) sinh A3 = 0. (23)
Case 6. S—-C-S-F

(22a,b,c,d)

I dsi? [C%LlLZ — C2LsLy — 2(Cy — Co) (1 — v)} cos A, cosh 4, cosh J;
+(C1 — C)Cop?{ [LiLy — 2(1 — v)A323n*] sinh 4, sinh 5
+a2anP[Li(1 = v) = 2Ly]} cos Ay + (Cy — Co)Ciipp? { [LsLy — 2(1 — v) A7 /3n*] sin 2, sinh 45
— 212307 [L3(1 — v) + 2Ly] } cosh 2y + C1Cadsn* [(L1La2] + LsLas3) sin 2y sinh 2,
+2172(LiLy — LyL3)] cosh A3 = 0. (24)
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In Egs. (18)—(24)
U= mnm, (25a)

and 1,4, and A3 are related to nondimensional frequency parameter through relations

1 1 1
o= . [0} —mPn?, Ay = H\/ —03 +m2n2,  J :E —a3 + m*n2. (25b,c,d)

A point frequently overlooked in the literature is that it is possible for o] to be less than mzzrz. When this
occur it is necessary to replace sin(4,X,) and cos(4,X») in Eq. (17a) by sinh(4,X,) and cosh(4,X>), respec-
tively, where

~ 1
A :H\/—fx% + m2n2. (26)

Thus the characteristic equations become the following.
Case 1. S—S-S-S
sinh 7, sinh 4, sinh /3 = 0. (27)
Case 2. S-C-S-S

(Cl — Cz),u2 tanh }ul tanh /lz — 11213 (CIZI tanh /‘{2 — Cz/lz tanh 11) tanh 13 =0. (28)
Case 3. S-C-S-C
2(Cy — C)nPu* s {Czﬂvz(cosh Jacosh 4; — 1)sinh 4, — C1 4 (cosh J, cosh i3 — 1) sinh ﬂuz}

+ (€1 = ot + (€33 + G2 ) 2] sinh Jy sinh 7, sinh 7

—2C,Con* 22 (cosh 7, cosh 4 — 1) sinh /5 = 0. (29)
Case 4. S-S-S-F
C211L1L2 tanh )\42 + ClingL‘ tanh jxl — 2(C1 — Cz)]’,z,u2’)11j.2/"b3(1 — V) tanh }g =0. (30)
where
Ly= 71122? + vl (31)

Case 5. S—F-S-F
4(C1 — CP 4o Il [C1}~2L3Z4 (cosh 71 cosh /s — 1) sinh 4
+C2:11L1L2(cosh Az cosh 23 — 1) sinh 11} (I —v)
- [4(C1 — O T 22 =)+ CULLALE + cf/lngZﬂ sinh 7, sinh /, sinh /3

— 2C1C221/12L1L2L3Z4 (COSh}Ll cosh /12 — 1) sinh /13 =0. (32)
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Case 6. S—-C-S-F
21),213;72 {CngLg — C%L3Z4 -2(C, - C2)2u4(1 — v)} cosh 2, cosh 2, cosh /5

+(Cy = C)CogP{[LiLy — 2(1 — v)73731"] sinh /5 sinh 23 + 22439*[Li (1 — v) — 2Ls]} cosh 4y

+(C - cz)clzz;f{ [L3Z4 21— v)}j@n“] sinh 4 sinh 43 — s [L3(1 W)+ 224} } cosh 2,

— ol [(lef - L3Z4i§> sinh 7, sinh 4, — A1 (L1Z4 - L2L3)] cosh /3 = 0. (33)
Because of the geometric symmetry which exists about the axis x, = 5/2 (i.e., “x,-symmetry”) in case 1, 3
and 5, vibration modes in these cases will separate into ones which are either x,-symmetric or x,-antisym-
metric. The characteristic equations corresponding to those modes can be obtained from Egs. (18), (20),

(23), (27), (29) and (32) by factoring, or by new derivations in terms of a coordinate system having its origin
in the centre of the plate. The resulting equations are the following.

Case 1. S—-S-S-S

. A A A
symmetric : cos71 cosh?2 cosh?3 =0,
o > mPn’ (34a,b)
. . LM A A
antisymmetric : sm% smhj2 smhf3 =0,
: A / y
symmetric : cosh;1 cosh% cosh?3 =0,
o < m'n’ } (34c,d)
. . . /ll . )\.2 . ii{
antisymmetric : sinh — sinh— sinh— = 0.
2 2 2
Case 3. S-C-S-C
- 5 Ja A 5 3
symmetric : M| Cady tanhE + Ciq tanE + (Cy — Cy)u tanhE =0,
ocf > m*n?
. . ) 2 A2 23 5y A Ja
antisymmetric : A3 [ Cads tani —C A tanh? tanhj +(C, = C)u tani tanhj =0,
(35a,b)
. - Ja s I oAy
symmetric : Aan? | Caly tanhf —Ci tanhj +(C, = Cy)u tanh? =0,
o < m’n?

. p - ) ) J !
antisymmetric :  A3n° (Cgﬂ,z tanhj1 — Cy4; tanh 22) tanh% +(C, — Cz),u2 tanh% tzmh52 =0.

(35c.d)
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Case 5. S—-F-S-F

. A A 2
symmetric : (CZ/IILILZ tan?1 — CiA2Ls3L4 tanh f) tanh?3
2 A 2 ;ul ;Lz
—2(C1 — C2)17 /11/L2)v3,u (1 — V) tanE tanh? = O,
a > min? E ) (36a,b)
antisymmetric :  CyAyL3L4 tani1 + CyA1L1L, tanh %
299 2 /3
—2(C1 — C2)1’] j.l/bz){;ﬂ (1 — V) tanh? = O,
, . 1 ~ Ja J
symmetric : CyAMLiL,y tanh; + Ci1AL5L4 tanh? tanh;
—2(Cy — C) o dalz 2 (1 — v) tanh& tanh”2 — 0
2 < min R 2 270 (36¢,d)

. . ~ 3 ~ A
antisymmetric :  CyA;L3L4 tanh % 4 Co4 L1 L, tanh 72

. )
—2(Cy = C)N*Adadzp2 (1 — v) tanhg =0.

It is also seen that, for example, Eqgs. (35b) and (35d) are the same as Eqs. (19) and (28), respectively,
except that 4;, 4, and A3 have been replaced by 1,/2, 2,/2 and /3/2, respectively. The physical significance
of this is that the x,-antisymmetric modes of vibration (and the corresponding frequencies) of an S—-C-S-C
plate of length to width ratio # are the same as those of an S—-C-S-S plate of length to width ratio 2#. This is
because the conditions along the antisymmetric axis of an S—-C-S-C plate are the same as conditions of a
simple support. The same corresponding exists between Egs. (36b) and (36d) for the S-F-S-F plate and
Egs. (21) and (30) for the S-S-S-F plate.

In order to find the nondimensional transverse deflection, previously mentioned procedure in determi-
nation of the characteristic equation for the six cases may be applied. Focusing on arbitrary constants
A; and presenting them in terms of A4;, leads to the following nondimensional transverse displacements
for each cases.

Case 1. S—-S-S-S

(73 = A] sin(/lle) sin(mnXl). (37)
Case 2. S—-C-S-S
Us = Ay |sin(4.X3) — —=2L sinh(JoX,) | sin(mmX,). (38)
sinh 4,

Case 3. S-C-S-C

Sil’lh(izXz)

{]3 = A1 [sin(/lle) + b1 COS(;LIXQ) — (b] [0 /ll — b] cosh )uz + sin /11) sinh A
2

—b, cosh(/lzXz)] sin(mnX,), (39)
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where

_ 7]223(C212 sin ;Ll — Cl;ul sinh )»2) sinh /13 + (C] — Cz),uz sin ;Ll sinh )»2
Can*lal3(cos Ay — cosh 4y) sinh A3 + (C — Cy)p2(cos Ay — cosh A3) sinh A,

Case 4. S—-S-S-F

by =

(40)

~ LA . .
U; Al{[sin(ile) + by cos(41X,)] cosh A, +Ll—z1 sinh[A,(1 — X3)] — (bacos Ay +sin /) cosh(izXz)}
342

sin(mnX,)
e etV 41
cosh 1, (41)
where
R,
=-! 42
b2 R2 ) ( a)
R1 = C2L2(L3)v2 sin /ll — LI)LI sinh /L2) cosh )»3
+ (Cl — C2)/L2’uz(1 — V) (Lg sin /ll + 2112/1123 sinh 13) cosh 12, (42b)
Ry = L3/2{CsL, cos A; cosh A3 + [(C; — Ca)p?(1 — v) cos 4, + C Ly cosh Z3] cosh 4, }. (42c¢)
Case 5. S—-F-S-F
~ Loy . ., ) .
U; = 4, |sin(4,.X3) + by cos(A1.X5) — # sinh(1,X3) + by cosh(X>) | sin(mnX,), (43)
32
where
R; Rs
-5 -5 4da.b
b3 R4 ) b4 R6 3 ( a, )
R3 = 2(C1 — C2)172/12/11/12)u3(1 — V)(COS )VI — cosh 23) sinh )uz — C2L1L2/11(COS )vl — cosh )uz) sinh /13,
(44c¢)
R4 = C2L|L2)\,] Sil’l /11 sinh )»3 — )Q [2(C1 — C2)172,LL2/11)V3(1 — V) sin },] + C1L3L4 sinh )Vj,] sinh )\,2, (44d)
Rs = n*A1A3(1 — v)[(Cy — 1)Li(cosh 4, — cosh A3) + (C; — 1)L3(b3 sin 4; — cos Ay + cosh 13)]
— b3CL3Ly sinh 73, (44e)
R6 = L3[(C2 — 1)1’]2/L2;L';(1 — V) sinh 12 — Csz sinh 13] (44f)

Case 6. S—-C-S-F

~ Ll . .
Uj; = Al{[sin(ile) + bs cos(41X,)] cosh A, + Ll—jl sinh[4(1 — X3)] — (bscos A +sin 4y) cosh(izXz)}
342

sin(mnX,)
cosh 1,

where
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R7 = C2L2 (L3/lz sin )u] — L] /11 sinh )uz) cosh /13
+(C1 = C) P 25(1 — v) (L3 sin Ay 4 2i* A1 A3 sinh 13) cosh 25, (46b)

Ry = L3,[(Cy — C) (1 — v) cos 4y cosh 2y + (CyL; cos A; + CyLy cosh 4,) cosh /3] (46¢)

4. Results and discussion

The eigenvalues obtained from the exact characteristic equations presented in Section 3 have been ex-
pressed in terms of the nondimensional frequency parameter § = wa®+/ph/D where the symbols are as de-
fined in Section 2. Numerical calculations have been performed for each of the six cases with arrangement
of the boundary conditions as shown in Fig. 2. For the analysis, Poisson’s ratio v = 0.3 and shear correction
factor K> = 0.86667 have been used. The results are given in Tables 1-6 for the thickness to length ratios
6=0.01, 0.05, 0.1, 0.15 and 0.2 over a range of a aspect ratios y =0.4, 0.5, 2/3, 1, 1.5, 2 and 2.5.

In each table, for each values of # and 9, the nine lowest values of f§ are displayed in increasing sequence.
The results are exhibited in considerable accuracy simply because they were easily obtained to the accuracy
given, and because they may be of worth to someone desiring to investigate the accuracy of an approximate
method on some of these problems.

In addition, for each eigenvalue presented, the corresponding mode shape is described by the number of
half waves in each direction. Thus for example, a 42-mode has four half waves in the x;-direction and two
in the x,-direction. As an illustration a typical three dimensional deformed mode shapes together with their
corresponding deflection counter plots for plate with aspect ratio # = 2 and thickness ratio d = 0.1 are given
in Figs. 3-8. These figures express vividly the vibratory motion of the plate in each mode, for all considered
six different boundary conditions. To compute the three dimensional deformed mode shapes, the exact
transverse displacements given in Section 3 are used.

For all six cases the wave forms are, of course, sine functions in the x;-direction, according to their cor-
responding equations of transverse displacement. Furthermore, the wave forms in the x,-direction are sine
function exactly for the S—-S—-S-S case only, whereas for the other cases the forms are only approximately

X,
s c &
s
S S ¢
Case 1 Case 2 Case 3
X
s F ¢
s
F F F
Case 4 Case 5 Case 6

Fig. 2. Boundary conditions of Mindlin plates analaysed.



Table 1
First nine frequency parameters, f = wa” \/ph/D, for rectangular Mindlin plates: Case 1 (S-S-S-S)

nooe 1 2 3 4 5 6 7 8 9
04 001 114464 11 161815 12 240715 13 351137 14 410274 21 457575 22 493045 15 53.6391 23  64.6697 24
005 113906 11 160704 12 23.8273 13 345988 14  40.3278 21  44.8905 22 483006 15 524550 23  62.9631 24
01 11226 11 157408 12 23.1193 13 331515 14 383928 21  42.5226 22 455845 15 492869 23  58.5216 24
0.5 109617 11 152421 12 22,0911 13 311557 14 357913 21  39.4002 22 420625 15 452344 23  53.0591 24
02 10.6307 11 14.6304 12  20.8901 13 289548 14 329979 21 361126 22 383847 15 41.0929 23 47.6782 24
0.5 001 123343 11 197322 12 320578 13 419144 21 493045 22 493045 14  61.6170 23 714632 15 78.8455 24
005 122696 11 19.5676 12  31.6276 13  41.1847 21 483006 14  48.3006 22  60.0641 23  69.3900 15  76.3360 24
0.1 120752 11 19.0840 12 304080 13  39.1713 21 455845 14 455845 22 559920 23  64.0823 15  70.0219 24
0.5 117747 11 183661 12  28.7028 13 364745 21  42.0525 22 42,0525 14 509309 23  57.7001 15  62.6035 24
02 113961 11 17.5055 12  26.7944 13 335896 21  38.3847 14  38.3847 22 458969 23  51.5392 15  55.5860 24
2/3 001 142525 11 274021 12 43.8305 21 493045 13 569663 22  78.8455 23  79.9390 14  93.0579 31 106.1706 32
005 141662 11 27.0866 12  43.0338 21 483006 13 556341 22 763360 23  77.3616 14  89.5992 31 101.7120 32
0.1 139085 11 26.1803 12  40.8467 21 455846 13  52.1001 22  70.0219 23  70.8929 14 811723 31 91.1515 32
0.15 135147 11 248863 12 37.9402 21 420525 13 47.6345 22 62.6035 23 633181 14 71.6723 31  79.6527 32
02 13.0250 11 234005 12 34.8558 21 383847 13  43.1236 22 555860 23 561731 14 629921 31  69.4356 32
1 001 197322 11 49.3045 12 493045 21  78.8455 22 98.5222 13 98.5222 31 128.0114 23 128.0114 32 167.2821 14
005 19.5676 11 483006 12 483006 21 763360 22  94.6612 13  94.6612 31 121.6319 23 121.6319 32 156.6852 14
0.1 19.0840 11 455845 12 455845 21  70.0219 22 853654 13 853654 31 107.1775 23 107.1775 32 134.3586 14
0.15 183661 11 42,0525 12 42,0525 21  62.6035 22 750402 13 750402 31 922350 23 922350 32 113.0257 14
02 175055 11  38.3847 12  38.3847 21 555860 22 657193 13 657193 31  79.4758 23  79.4758 32  95.8088 14
1.5 001 320578 11 61.6170 21 985222 12 110.8131 31 128.0114 22 177.0912 32 179.5429 41 208.9471 13 238.3205 23
005 31.6276 11  60.0641 21 946612 12 1059727 31 121.6319 22 1652949 32 167.4381 41 192.8740 13 217.8092 23
0.1 304080 11 559920 21 853654 12 94.6182 31 107.1775 22 140.8579 32 1424658 41 161.2626 13 179.2185 23
0.5 287028 11 509309 21 750402 12 823977 31 922350 22 117.9100 32 119.1136 41 133.0590 13 146.1853 23
02 267944 11 458969 21 657193 12 71.6377 31 794758 22  99.6076 32 100.5418 41 111.3137 13 121.3768 23
2 001 493045 11  78.8455 21 128.0114 31 167.2821 12 196.6991 22 196.6991 41 2456590 32 284.7657 51 314.0601 42
0.05 483006 11 763360 21 121.6319 31 156.6852 12 182.3382 22 182.3382 41 2239679 32 256.3294 51 280.0876 42
0.1 455845 11 700219 21 107.1775 31 1343586 12 153.5390 22 153.5390 41 183.5877 32 206.1567 51 222.3439 42
0.15 420525 11  62.6035 21 922350 31 113.0257 12 127.3559 22 127.3559 41 149.3536 32 1655766 51 177.0802 42
02 383847 11 555860 21 794758 31 958088 12 1069195 22 1069195 41 1237961 32 136.1329 51 144.8367 42
25 001 714632 11 1009808 21 150.1079 31 218.7416 41 2554408 12 284.7657 22 306.7394 51 3335728 32 401.7611 42
0.05 693900 11 969321 21 1414725 31 201.2400 41 232.1341 12 256.3294 22 274.1879 51 295.6941 32 348.9431 42
0.1 640824 11 872358 21 1227104 31 1673362 41 189.3433 12 206.1567 22 2183524 51 2328175 32 267.7055 42
0.15 577001 11  76.5366 21 104.1921 31 137.5189 41 153.5129 12 165.5766 22 1742530 51 184.4713 32 208.8358 42
02 515392 11 669264 21  88.9037 31 1147404 41 1269669 12 1361329 22 142.6999 51 1504103 32 168.7084 42
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Table 2
First nine frequency parameters, f§ = wa’ V/ph/D, for rectangular Mindlin plates: Case 2 (S-C-S-S)

no0 1 2 3 4 5 6 7 8 9
04 001 117476 11  17.1812 12 259035 13  37.8029 14 41.1764 21 463224 22 52.8453 15 548155 23  66.5794 24
0.05 11.6850 11  17.0406 12 255844 13 37.1372 14 404657 21 454099 22  51.5765 15 53.5247 23  64.6733 24
0.1 114978 11  16.6289 12 24.6755 13 353040 14  38.5047 21 429370 22  48.2205 15 50.1169 23  59.8000 24
015 112099 11 160131 12 233910 13 32.8522 14 358757 21 337062 22 43.9968 15 458272 23  53.9333 24
02 108485 11 152883 12 21.9343 13 302342 14 33.0596 21 363314 22 39.7527 15 41.5028 23  48.2574 24
0.5 001 129152 11  21.5239 12 351857 13 422071 21  50.3833 22 53.7648 14  63.7888 23 772317 15 82.2622 24
0.05 12.8364 11 212958 12 34.5903 13 414551 21  49.2868 22 524227 14  62.0152 23 745602 15 79.3340 24
01 126022 11  20.6396 12 32.9442 13 393897 21 463599 22 488927 14 574621 23 679286 15 72.1582 24
0.15 122463 11  19.6950 12 307273 13  36.6382 21  42.5151 22 444857 14 51.9457 23 602851 15 63.9881 24
02 118061 11  18.6005 12 28.3427 13 337085 21  38.7801 22 40.0930 14 465758 23  53.1956 15  56.4568 24
2/3 001 155730 11  31.0513 12 445274 21 553280 13  59.3935 22 834671 23 882786 14 935171 31 107.8902 32
0.05 154495 11  30.5618 12 43.6749 21  53.8568 13  57.8255 22 80.3834 23 84.7336 14  89.98380 31 103.1426 32
0.1 150884 11  29.1996 12 413592 21  50.0238 13 53.7714 22 72.8944 23 762034 14 814322 31  92.0726 32
0.15 145534 11 273443 12 383196 21 453026 13  48.8050 22  64.4583 23  66.7630 14  71.8333 31  80.2016 32
02 139113 11 253235 12 351279 21 40.6583 13 439183 22 567495 23 583074 14 63.0916 31  69.7628 32
1 001 236327 11 516210 21 585687 12  86.9792 22 100.0830 31 112.9554 13 1334419 32 1404363 23 1684411 41
005 233165 11 504086 21 56.8131 12 825585 22 959681 31 107.0406 13 1260049 32 131.7770 23 157.5590 41
0.1 224260 11 472245 21 523247 12 744019 22 862191 31 937048 13 109.8111 32 1133710 23 134.8340 41
0.5 211863 11 432289 21 469422 12 654110 22 755571 31  80.0807 13  93.7048 32  95.6537 23 113.2739 41
02 197988 11 392032 21 41.7813 12 573380 22  66.0322 31  68.6409 13  80.3009 32 813218 23 959436 4l
1.5 001 424805 11  68.8966 21 1159983 31 120.6613 12 147.1557 22 183.4637 41 193.0206 32 242.2357 13 258.8632 42
0.05 414044 11 665348 21 1102167 31 1134983 12 137.1419 22 170.3298 41 177.2548 32 217.4457 13 232.9624 42
0.1 385769 11  60.7549 21  97.2651 31 97.8687 12 116.5230 22 1439801 41 147.1747 32 173.5875 13 187.6984 42
015 350448 11 541437 21 825178 12 839300 31 97.3494 22 113.8782 41 121.0230 32 138.5953 13 1504991 23
02 315267 11 48.0072 21  70.0311 12 725296 31  82.2259 22 100.9450 41 101.1634 32 113.6533 13 123.1253 23
2 001 69.198 11 943686 21 139.7820 31 205.8509 41 207.3996 12 233.3530 22 277.9620 32 292.1256 51 342.0830 42
0.05 663511 11  89.7030 21 130.9804 31 187.5642 12 188.8981 41 209.2989 22 246.0990 32 261.0176 51 297.6075 42
0.1 594801 11  79.1951 21 112.6778 31 151.1821 12 156.8127 41 167.1253 22 193.5916 32 208.1506 51 229.3521 42
015 51.8607 11 683565 21 952504 31 1213015 12 128.9416 41 133.6229 22 153.6213 32 1664441 51 179.8461 42
02 450569 11  59.1227 21  81.1493 31 99.7234 12 107.7263 41 109.7471 22 1256314 32 136.5442 51 1459761 42
25 001 103.6319 11 1279211 21 171.6985 31 236.0692 41 3184472 12 320.9089 51 344.0324 22 387.7050 32 425.7568 61
0.05 97.3935 11 1192345 21 157.9952 31 2132347 41 2752171 12 2829241 51 2952020 22 3289451 32 364.6718 6l
0. 837200 11  101.3485 21 131.7944 31 172.9946 41 208.5001 12 221.8976 51 222.3865 22 2455162 32 275.9405 61
015 702511 11 847126 21 108.8771 31 140.1314 41 161.2420 12 171.8160 22 1757373 51 189.0764 32 212.0670 42
02 593130 11  71.6052 21  91.3660 31 116.0146 41 129.7437 12 130.3163 22 143.3802 51 151.9878 32 169.8007 42
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Table 3
First nine frequency parameters, § = wa” \/ph/D, for rectangular Mindlin plates: Case 3 (S-C-S-C)

n 0 1 2 3 4 5 6 7 8 9
04 0.01 12.1316 11 18.3570 12 27.9479 13 40.7131 14 413469 21 46.9587 22 56.1158 23 56.6060 15 68.6533 24
0.05 12.0590 11 18.1764 12 27.5336 13 39.8639 14 40.6226 21 459913 22 54.6987 23 55.0253 15 66.5157 24
0.1 11.8438 11 17.6557 12 26.3750 13 37.5735 14 38.6303 21 433940 22 509382 15 51.0131 23 61.1531 24
0.15 11.5174 11 16.9020 12 247824 13 34.6025 14 359689 21 40.0379 22 459577 15  46.4560 23 54.8423 24
0.2 11.1138 11 16.0217 12 23.0300 13 31.5289 14 33.1265 21 36.5648 22 41.1088 15 419312 23 48.8511 24
0.5 0.01 13.6815 11 23.6327 12 38.6587 13 42.5528 21 51.6210 22 585687 14  66.2080 23 83.3361 15 859792 24
0.05 13.5802 11 233165 12 37.8509 13 41.7720 21 50.4086 22 56.8130 14  64.1675 23 79.9592 15 82.5585 24
0.1 13.2843 11 224260 12 35.6730 13 39.6410 21 472245 22 523247 14 59.0487 23 71.8320 15 74.4019 24
0.15 12.8449 11 21.1853 12 32.8430 13 36.8226 21 43.2289 22 46.9422 14  53.0168 23 62.8423 15 65.4110 24
0.2 123152 11 19.7988 12 299258 13 33.8397 21 39.2032 22 41.7813 14 47.2796 23 54.8076 15 57.3380 24
2/3 0.01 17.3650 11 353123 12 453888 21 61.9619 13 62.2293 22 88.6311 23  94.0500 31 97.2091 14 109.8438 32
0.05 17.1780 11 345748 12 44.4590 21 59.8841 13 60.3535 22 84.8364 23  90.4330 31 92.4804 14 104.7439 32
0.1 16.6455 11 32,5876 12 419700 21 54.6728 13 55.6450 22 759555 23 81.5726 14  81.7216 31 93.0746 32
0.15 15.8866 11 30.0089 12 38.7587 21 48.5864 13 50.0790 22 66.3792 23 70.1356 14 72.0080 31 80.7841 32
0.2 15.0147 11 27.3400 12 354346 21 428936 13 447624 22 579303 23 60.3576 14 63.1974 31 70.1036 32
1 0.01 28.9250 11 54.6743 21 69.1986 12 943686 22 102.0112 31 128.6906 13 139.7820 32 154.2163 23 169.8080 41
0.05 283324 11 53.1373 21 66.3511 12 89.7039 22 975475 31 120.1190 13 130.9804 32 142.6920 23 158.5640 41
0.1 26.7369 11 49.2606 21 59.4801 12 79.1951 22 87.2072 31 102.0186 13 112.6777 32 119.7031 23 135.3588 4l
0.15  24.6627 11 44.6258 21 51.8607 12 683565 22 76.1326 31 84.9044 13 952504 32 99.0339 23 113.5394 41
0.2 22.5099 11 40.1384 21 450569 12 59.1227 22 66.3706 31 71.3904 13 81.1493 32 83.1187 23  96.0845 41
1.5 0.01 56.2448 11 78.8093 21 122.8265 31 145.6903 12 169.3605 22 188.3988 41 211.7274 32 2743277 42 274.5527 51
0.05 53.9555 11 75.0706 21 115.6043 31 133.7728 12 154.3074 22 173.8255 41 190.6678 32 2424780 13 243.0197 42
0.1 48.4087 11 66.6351 21 100.4080 31 110.1837 12 126.1069 22 145.6983 41 153.8021 32 185.2639 13 192.0288 42
0.15 422206 11 57.8782 21 85.6528 31 89.3976 12 102.3338 22 120.7072 41 124.1600 32 143.7580 13  153.0497 42
0.2 36.6729 11 50.3588 21 73.4961 31 737977 12 84.8230 22 101.3700 41 102.6970 32 115.9495 13 124.8211 23
2 0.01 949657 11 1153920 21 155.7139 31 217.8840 41 2523968 12 275.2751 22 301.4748 51 3155370 32 3749280 42
0.05 88.6635 11 106.9478 21 1429794 31 197.0426 41 219.5822 12 237.9205 22 266.6247 51 270.0802 32 316.7803 42
0.1 75.1962 11 90.0396 21 119.1498 31 160.5535 41 166.7806 12 180.2276 22 203.5789 32 210.3605 51 236.4907 42
0.15 623265 11 74.7615 21 96.5933 31 1283870 12 130.6597 41 139.3327 22 1577092 32 167.3639 51 182.5724 42
0.2 52,1283 11 62.9729 21 82.9509 31 102.7371 12 108.5772 41 112.1661 22 127.3254 32 136.9708 51 147.0735 42
2.5 001 1447935 11 163.8759 21 201.0471 31 259.3802 41 339.5056 51 388.7324 12 411.1071 22 440.8641 61 449.9461 32
0.05 130.8827 11 147.0368 21 178.9088 31 228.2013 41 293.5267 51 318.3346 12 334.8798 22 363.6302 32 372.2524 6l
0.1 1049093 11 117.2663 21 142.2023 31 179.4027 41 2254032 12 225.8277 51 237.2521 22 257.6112 32 2784012 61
0.15 83.3775 11 93.5703 21 1139885 31 1429462 41 167.2978 12 177.0700 22 177.3102 51 193.2199 32 214.7519 61
0.2 67.8833 11 76.7883 21 94.0516 31 117.3738 41 131.3314 12 139.7953 22 144.0924 51 153.2190 32 170.7370 42
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Table 4
First nine frequency parameters, f§ = wa’ \/ph/D, for rectangular Mindlin plates: Case 4 (S-S-S-F)

nos 1 2 3 4 5 6 7 8 9
04 001 101222 11 13.0496 12 18.8228 13  27.5284 14  39.2892 15 395761 21  42.6553 22  48.7177 23 541731 16
0.05 10.0713 11 129603 12 18.6358 13  27.1525 14 38.5752 15 38.8966 21  41.8689 22  47.6855 23  52.8872 16
0.1 99310 11 127247 12 18.1563 13  26.1848 14 367312 15 37.0585 21  39.7612 22  44.9842 23  49.6061 16
015 97173 11 123761 12 174706 13  24.8468 14 342845 15 369691 21 414997 22 454674 16  48.0301 23
02 94470 11 11.9466 12 16.6594 13 233345 14  31.6579 15 340024 21  37.8894 22 412613 16 434247 23
0.5 001 102948 11 147549 12 235941 13  37.0777 14 397326 21 444758 22 53.8263 23 554110 15 67.7799 24
0.05 102402 11 14.6337 12 232979 13 364180 14  39.0413 21  43.6095 22  52.5476 23  54.0508 15  65.7675 24
0.1 100929 11 143272 12 225568 13 347428 14  37.1858 21  41.3217 22 49.2886 23  50.6215 15  60.8325 24
0.15 9.8705 11 13.8833 12 21.5258 13 32,5147 14 347029 21  38.3223 22 451815 23 463254 15 549158 24
02 95902 11 133463 12 203423 13 30.1061 14  32.0344 21 351634 22  41.0123 23 419810 15 49.1758 24
2/3 001 106655 11 182782 12 33.6462 13  40.0898 21  48.3432 22 574932 14  64.6033 23  88.9601 24  89.1023 31
0.05 10.6028 11 18.0794 12 33.0646 13  39.3762 21 472942 22 56.0059 14  62.7278 23 855180 24  85.8236 31
0.1 104404 11 17.6033 12 31.6345 13 374806 21  44.6033 22 523231 14  58.1652 23  77.5538 24  77.9373 31
0.15 10.1988 11 169368 12 29.7288 13 349551 21  41.1494 22 477596 14  52.6627 23  68.6209 24  69.0079 31
02 98972 11 161546 12 27.6476 13 322485 21  37.5758 22  43.1813 14 472839 23 604233 24 612471 15
1 001 116746 11 277042 12 41.1469 21 589430 22  61.7308 13  90.1079 31  94.1917 23 108.6295 32 1153773 14
0.05 11.5877 11 27.2439 12 403718 21  57.3087 22 59.9760 13 867166 31  90.2271 23 103.7154 32 109.9606 14
0.1 113810 11 261910 12 383610 21  53.3852 22 557620 13  78.6490 31  81.3690 23  92.5861 32  97.7407 14
0.15 11.0843 11 247933 12 357110 21  48.6013 22  50.6444 13  69.5645 31  71.6390 23  80.6821 32  84.7846 14
0.2 107218 11 232429 12 32.8922 21  43.8679 22  46.6862 13  61.2416 31  62.8294 23 702031 32 734143 14
1.5 001 13.6902 11 435028 21 477345 12 81.2001 22 924741 31 1241821 13 132.3816 32 158.1694 23 160.8479 41
005 13.5441 11 425886 21 465188 12  78.0153 22  88.8342 31 117.8897 13 124.9498 32 147.8047 23 150.6618 41
0.1 132343 11 403170 21 437524 12 71.0199 22  80.3498 31 104.0594 13 109.3530 32 127.0726 23 129.5337 41
0.5 12.8130 11 37.3871 21 403149 12  63.1636 22 709025 31  89.6929 13  93.6847 32 107.1792 23 109.2717 41
0.2 123167 11 343172 21 367879 12 558742 22 623103 31  77.2283 13 804796 32  90.8391 23  92.8373 4l
2 001 160971 11 46.6393 21 750554 12 957777 31 110.5044 22 163.8087 32 164.1500 41 211.1602 13 234.7995 42
0.05 158630 11 455242 21 723859 12  91.7889 31 104.7642 22 1524308 32 153.4438 41 194.5058 13 213.5408 42
0.1 154054 11 42.8870 21 663720 12 827190 31 929718 22 130.3462 32 131.5689 41 162.3547 13 1754315 42
0.15 148112 11 395731 21 594250 12 727642 31  80.7070 22 109.5805 32 110.7739 41 1334920 13 143.0749 42
02 141341 11 361646 21 528012 12 63.7960 31  69.9757 22 92.8079 32  93.9941 41 110.5435 13 118.7291 42
25 001 187406 11 50.4009 21 999102 31 109.8392 12 1467800 22 168.3842 41 2023165 32 256.0054 51 2752534 42
0.05 183895 11 49.0194 21 954674 31 104.6127 12 137.1854 22 157.0074 41 185.3216 32 231.7630 51 2464233 42
0.1 17.7395 11 459146 21 85.6500 31 932356 12 118.5437 22 134.1717 41 154.6262 32 188.6209 51 198.1884 42
0.15 169249 11 42.1227 21 750566 31  81.0910 12 1004748 22 112.6931 41 127.5138 32 152.8319 51 159.2575 42
02 160212 11 382999 21 656190 31 702224 12 853984 22 954702 41 1063776 32 1264017 51 130.6939 42
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Table 5
First nine frequency parameters, § = wa® \/ph/D, for rectangular Mindlin plates: Case 5 (S-F-S-F)

n 0 1 2 3 4 5 6 7 8 9
04 001 97569 11 11.0297 12 150461 13 21.6744 14 31.1252 15 39.2043 21 40.4594 22 435927 16  44.8844 23
0.05 9.7107 11 109587 12 149033 13 21.3894 14 30.5968 15 39.5389 21 39.7240 22 42,6585 16 439728 23
0.1 9.5814 11 10.7809 12 145672 13 20.7245 14 29.3338 15 36.7363 21 37.7879 22 40.3787 16 41.6202 23
0.15 93833 11 10.5199 12 14.0936 13 19.8152 14 27.6516 15 343132 21 35.2188 22 37.4463 16 38.5619 23
0.2 9.1313 11 10.1968 12 13.5287 13 187728 14 258016 15 31.7000 21 324730 22 34.3696 16 35.3558 23
0.5 001 97328 11 11.6746 12 17.6584 13 27.7042 14 39.1526 21 41.1469 22 422999 15 47.8924 23 58.9430 24
0.05 9.6858 11 11.5877 12 17.4479 13 272440 14 384845 21 40.3718 22 41.3784 15 46.8244 23 57.3087 24
0.1 9.5560 11 11.3811 12 169766 13 26.1910 14 36.6824 21 38.3610 22 39.1884 15 44.1468 23 53.3852 24
0.15 93578 11 11.0842 12 163322 13 247933 14 342626 21 35.7110 22 36.3834 15 40.7299 23 48.6013 24
0.2 9.1061 11 10.7218 12 155826 13 232429 14 31.6538 21 32.8922 22 33.4360 15 37.2004 23 438579 24
2/3 001 9.6945 11 129648 12 229038 13 39.0679 21 40.2602 14  42.6228 22 54.1237 23 66.0689 15 729810 24
0.05 9.6463 11 12.8416 12 225355 13 383955 21 393568 14  41.7615 22 52.6938 23 64.0286 15 70.4130 24
0.1 9.5157 11 125711 12 21.7490 13 36.5941 21 37.3019 14 39.5886 22 49.2912 23 59.2503 15 64.6182 24
0.15 93175 11 121967 12 20.7148 13 341797 21 34.6910 14 36.7640 22 45.0990 23 53.5523 15 57.9316 24
0.2 9.0666 11 11.7505 12 19.5561 13 31.5782 21 31.9427 14 33.7882 22 40.8870 23 479953 15 51.5921 24
1 0.01 9.6270 11 16.0971 12 36.6112 13 389043 21 46.6393 22 70.4846 23 75.0554 14 87.8151 31 95.7777 32
0.05 95771 11 158630 12 357400 13 382240 21 455242 22 67.9066 23 72.3859 14 84.6068 31 91.7889 32
0.1 9.4458 11 154054 12 339160 13 36.4246 21 42.8870 22 62.3304 23 66.3720 14 76.9042 31 82.7190 32
0.15 9.2484 11 148112 12 31.6442 13 34.0208 21 39.5731 22 55.9480 23 59.4250 14 68.1629 31 72.7642 32
0.2 89997 11 14.1341 12 29.2558 13 31.4338 21 36.1646 22  49.8953 23 52.8012 14 60.1064 31 63.7960 32
1.5 001 95535 11 21.5305 12 38.6764 21 54.6518 22 65.5402 13 87.4436 31 103.3677 23 104.7633 32 152.1523 14
0.05 9.5030 11 21.0333 12 379868 21 529372 22 63.2537 13 84.2198 31 97.8722 23 99.7582 32 142.7898 14
0.1 9.3729 11 20.1451 12 36.1927 21 49.2667 22 58.4124 13 76.5468 31 87.0907 23 89.0395 32 1234724 14
0.15 9.1787 11 19.0615 12 338064 21 449105 22 52.8207 13 67.8548 31 759074 23 77.6896 32 104.3945 14
0.2 8.9345 11 17.8846 12 31.2425 21 40.6053 22 474411 13 59.8469 31 66.0798 23 67.6996 32 88.1197 14
2 0.01 95078 11 273597 12 38.4774 21 642036 22 87.0926 31 105.0353 13 116.2287 32 1458142 23 155.2404 41
0.05 9.4583 11 264801 12 37.7831 21 61.6215 22 83.8573 31 100.0269 13 109.7706 32 135.6642 23 145.6983 41
0.1 9.3306 11 249711 12 359987 21 56.5363 22 762163 31 89.5926 13 96.8198 32 117.0233 23 125.7350 41
0.15 9.1402 11 23.1961 12 33.6339 21 50.8097 22 67.5758 31 78.5665 13 83.6442 32 99.2701 23 106.3946 41
0.2 8.9007 11 21.3271 12 31.0963 21 453418 22 59.6198 31 68.8138 13 72.3227 32 84.6280 23 90.5962 41
2.5 001 94797 11 333642 12 383130 21 74.6758 22 86.7681 31 129.4716 32 1547650 41 1553634 13 198.1144 23
0.05 9.4315 11 319757 12 37.6187 21 709578 22 835270 31 121.1250 32 1452186 41 1455793 13 181.0380 23
0.1 9.3065 11 29.6389 12 358486 21 64.0850 22 759234 31 1054121 32 1253334 41 126.1938 13 151.4692 23
0.15 9.1193 11 269579 12 335079 21 56.6669 22 67.3397 31 90.0267 32 106.0845 41 107.5585 13 1254338 23
0.2 8.8835 11 242054 12 309976 21 49.7609 22 59.4404 31 77.0654 32 90.3658 41 92.2433 13 105.0932 23
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Table 6
First nine frequency parameters, f = wa” \/ph/D, for rectangular Mindlin plates: Case 6 (S-C-S—F)

n 0 1 2 3 4 5 6 7 8 9
0.4 0.01 10.1848 11 13.5947 12 20.0776 13 29.5868 14  39.6021 21 42.1851 15 429565 22 49.5127 23 57.9108 16
0.05 10.1319 11 13.4887 12 19.8437 13 29.1124 14  38.9107 21 41.2803 15 42,1449 22 484091 23  56.3209 16
0.1 9.9871 11 13.2121 12 19.2456 13 27.8944 14  37.0765 21 389971 15 39.9820 22 45.5522 23 52.3237 16
0.15 9.7676 11 12.8087 12 18.4063 13 26.2480 14  34.6080 21 36.0362 15 37.1334 22 419122 23 474327 16
0.2 9.4910 11 123200 12 17.4363 13 244379 14 319525 21 329523 15 341210 22 38.1799 23 42,6163 16
0.5 0.01 104206 11 15.7393 12 257574 13  39.7874 21 40.5324 14 45.0551 22 552982 23  60.1784 15  70.3559 24
0.05 103618 11 15.5842 12 253653 13 39.0904 21 39.6621 14 44.1381 22 538756 23 584177 15  68.0502 24
0.1 10.2054 11 15.1956 12 243830 13 37.2242 21 374665 14 41.7409 22 503101 23  54.0543 15 62.5113 24
0.15 99712 11 14.6443 12 23.0502 13  34.6374 14 347311 21 38.6310 22 459063 23 487890 15  56.0469 24
0.2 9.6782 11 139934 12 21.5678 13  31.6896 14  32.0545 21 353839 22 415112 23 43.6674 15 499152 24
2/3 001 109682 11 203073 12  37.8901 13  40.2293 21 49.6579 22 64.0609 14  67.7516 23  89.1850 31 94.2461 24
0.05 10.8951 11 20.0257 12 37.0603 13  39.5018 21 48.4841 22 619924 14  65.5195 23 85.8902 31 90.0643 24
0.1 10.7099 11 19.3498 12 35.0192 13 37.5793 21 46.5302 22 569754 14  60.2293 23 779793 31 80.6773 24
0.15 104390 11 18.4298 12 324007 13  35.0275 21 41.8180 22 51.0561 14  54.0632 23  69.0335 31 70.5727 24
0.2 10.1060 11 17.3888 12 29.6707 13 32.3003 21 38.0442 22 454110 14 482070 23  61.6093 24  63.2764 15
1 0.01 12.6728 11 329925 12  41.6472 21 62.8595 22 722171 13 90.4194 31 102.7904 23 111.5689 32 130.9964 14
0.05 12.5482 11 32.2370 12 40.8218 21 60.7824 22 69.4393 13 86.9701 31 97.5322 23 106.1105 32 123.0672 14
0.1 122606 11 30.4743 12 38.7128 21 559736 22 629527 13 788120 31 86.2713 23 94.0906 32 106.1656 14
0.15 11.8620 11 28.2362 12 35.9677 21 50.3782 22 55.6218 13 69.6629 31 74.6338 23 81.5621 32  89.6189 14
0.2 11.3931 11 25.8975 12 33.0747 21 45.0445 22 48.8911 13 61.3014 31 64.6148 23 70.7202 32  76.0573 14
1.5 0.01 16.7875 11 452148 21 60.8312 12 919180 22 935911 31 141.1267 32 149.0012 13 161.6466 41 180.1544 23
0.05 165179 11 44.1176 21 584647 12 87.1780 22 89.7406 31 131.7987 32 138.3211 13 151.2366 41 164.9217 23
0.1 159404 11 41.4965 21 53.0869 12 77.3057 22 80.9273 31 113.3509 32 116.7400 13 129.8348 41 136.6792 23
0.15 151913 11 38.2377 21 46.9606 12 67.0994 22 712484 31 95.8630 32 96.8123 13 109.4262 41 112.0940 23
0.2 143646 11 349199 21 41.2635 12 58.2641 22 62.5203 31 81.1835 13 81.6739 32 929209 41 93.3381 23
2 0.01 227512 11 50.6057 21 98.4649 31 99.3823 12 131.4853 22 166.1173 41 181.7921 32 250.1932 42 253.2971 5l
0.05 222469 11 49.0424 21 93.5256 12 939506 31 121.8970 22 154.8514 41 165.8679 32 223.8942 42 227.2697 13
0.1 21.1870 11 45.5725 21 81.0357 12 84.0786 31 103.5900 22 132.2990 41 137.5355 32 178.6892 13 180.1780 42
0.15 19.8705 11 41.5047 21 68.4310 12 73.5755 31 86.6229 22 111.1472 41 113.1589 32 141.1201 13 145.1981 42
0.2 18.4903 11 37.5487 21 57.8767 12 64.2947 31 73.0862 22 94.1986 41 94.5611 32 114.5430 13 119.7053 42
2.5 0.01 30.5270 11 57.8545 21 105.1242 31 1487010 12 172.2784 41 181.4601 22 2329375 32 259.0458 51 302.2416 42
0.05 29.6813 11 555986 21 99.6242 31 136.3896 12 159.7670 41 163.9473 22 2069864 32 233.6515 51 263.6216 42
0.1 27.8981 11 50.9077 21 88.2403 31 112.4394 12 133.2557 22 135.5890 41 165.0990 32 189.4319 51 2054196 42
0.15 257584 11 457332 21 76.6139 31 91.0054 12 107.5361 22 113.4230 41 132.1264 32 153.2002 51 162.1838 42
0.2 23.6105 11 409415 21 66.6065 31 74.5669 12 88.3290 22 958842 41 108.2063 32 126.5933 51 131.8118 42
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Mode 1 Mode 2 Mode 3
(11) (21) (31)

45.5845 70.0219% 107.1775

Mode 4 Mode 5 Mode 6
(12) (22) (41)

134.3585 153.5389

Mode 7 Mode 8 Mode 9
(32) (51) (42)
206. 1566 222.,3439
¥ =

Fig. 3. First nine mode shapes of S-S-S-S rectangular plate (n =2, § = 0.1, v=0.3).

sinusoidal. A consequence of this result as it can be observed in Figs. 3-8 is that the nodal lines lying in the
x,-direction (three for a 41 mode) are evenly spaced. On the other hand those lying in the x;-direction (two
for a 13 mode), except for the S—-S—-S-S case, and except for an axis of symmetry are not evenly spaced.

To avoid any confusion it is pertain to mention that the phrase ‘nodal line’ should be interpreted as line
across which there is no transverse displacement whether or not accompanied with zero in-plane displace-
ment components.

For purpose of subsequent discussion in this section it is also useful to clarify some terminology with
respect to symmetry of modes. As already used in Section 3, x,-symmetric modes are those modes having
an axis of symmetry with respect to the x, -coordinate (e.g., 11, 21, 31, 13, 51 modes are x,-symmetric).
Similarly, for example, the 12, 22, 32, 42 and 14 modes are x;-antisymmetric modes. Accordingly as it
can be observed by examining the counter pots In Figs. 3-8 the above examples of x,-symmetric and
Xx,-antisymmetric modes are only true where double geometric symmetry exist (e.g., S-S-S-S, S-C-S-C,
S-F-S-F). In another word as it can be clearly seen in Figs. 6 and 8 the 11, 21, 31 and 13 modes are
not correct examples of the x,-symmetric modes where double geometric symmetry does not exist.

The close examination of the counter plots also suggests that the modes can be classified into four
distinct symmetry classes: namely, double-symmetry modes (SS), symmetry—antisymmetry modes (SA),
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Mode 1 Mode 2 Mode 3
(11) (21) (31)

59.4801 79.1950 112. 6777

Mode 4 Mode 5
(12) (41)

151.1821 156.8127

Mode 7 Mode 8 Mode 9
(32) (51) (42)

193.5916 208.1505

Fig. 4. First nine mode shapes of S—-C-S-S rectangular plate (1 =2, 6 =0.1, v=10.3).

antisymmetry—-symmetry modes (AS) and double antisymmetry modes (AA), about the midplanes parallel
to the x;-x3 and x»-x3 planes. According to these symmetry classes (11, 31, 51), (21, 41), (12, 32) and (22, 42)
modes in Fig. 3 may be given as an examples of SS, SA, AS and AA modes, respectively.

In order to study the effects of boundary conditions, plate aspect ratio and relative thickness ratio on the
vibrational behavior of the rectangular plates, considerations may now be focused on Tables 1-6. From the
results presented in these Tables, it is observed that the frequency parameters increase with increasing plate
aspect ratio # if the relative thickness ratio é and boundary conditions are kept constant.

The influence of thickness ratio on the frequency parameters for plates with specific boundary conditions
can also be examined by keeping the aspect ratio constant while varying the thickness ratio. As a result it
can be easily observed that, as the thickness ratio ¢ increases from 0.01 to 0.2, the frequency parameter de-
creases. The decrease in the frequency parameter is due to effects of shear deformation and rotatory inertia.
These effects are more pronounced in the higher modes than in the lower modes.

To study the effect of the boundary conditions on the vibration characteristic of thick plates, the fre-
quency parameters listed in a specific row of Tables 1-6 may be selected from each table and arranged
in terms of boundary conditions as Table 7. From the results presented in this table, it is observed that
the lowest frequency parameters correspond to plates subject to less edge restraints. As the number of sup-
ported edges increases, the frequency parameters also increase. Among all six boundary conditions listed in
Table 7, it can be seen that the lowest and highest values of frequency parameters correspond to S-F-S-F
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Mode 1 Mode 2 Mode 3
(11) (21) {31)

75.1961 90.0396 119.14%8

Mode 4 Mode 5 Mode 6
(22)
180.2276

Mode 7 Mode 8 Mode 9
(32) (51) (42)
236.4906

® @

Fig. 5. First nine mode shapes of S—-C-S—C rectangular plate (5 =2, 6 =0.1, v=0.3).

and S-C-S-C cases, respectively. Thus higher constraints at the edges increase the flexural rigidity of the
plate, resulting in a higher frequency response.

4.1. Complementary results

Further results may also be gleaned from present work regarding nodal lines, existence of eigenvalues
such that oy <mn and some specifications of individual cases as given below.

4.1.1. S-S-S-S
In order for Eq. (18) to be satisfied it is necessary that 4, = nr, with integer values of n. Thus for this case
(and only this case), the nondimensional frequency parameter can be determined explicitly; i.e.

~ ~ 2 ~2
. T2vK? 5P ( 1 ) B < 1 ) 5B
= 1+-—=(1 —\ | [1+==(1 - 47
ﬁ 54 + 12 * V1K2 + 12 + V1K2 36V1K2 ’ ( a)
where
p=m(m’ +n’n?), (47b)

is the frequency parameter of the corresponding simply supported thin plate.
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Mode 1 Mode 2 Mode 3
(11) (21) (12)

15.4053 42.8770 66.3713

Mode 4 Mode 5 Mode 6
(22)
92.9717

Fig. 6. First nine mode shapes of S—S—-S-F rectangular plate (n =2, 6 =0.1, v=10.3).

Inspection of frequency parameters listed in Table 1 reveals that, for example, the 12 mode for n = 0.5
and ¢ = 0.1 corresponds to the 11 mode of a plate having # = 1 and the same values of  and frequency
parameter. Similarly the 14, 22 and 24 modes of the former plate correspond to the 12, 21 and 22 modes
of the latter plate having the same values of ¢ and frequency parameters, respectively. This is because the
conditions along axis of symmetry and evenly spaced nodal lines are the same as those of simply supported
edge. In other word, for example, there are three evenly spaced nodal lines at position X, = 0.25, 0.5, 0.75
for the 24 mode of S-S-S-S plate. Considering only quarter of the plate in this mode, one then has an S-S—
S-S plate with aspect ratio 45 vibrating in the 21 mode, with the same frequency as the plate with aspect
ratio 7.

Consider now two S-S-S-S plates with same frequency parameters and different aspect ratios namely 7
and n*. Upon using Eq. (25b)one may easily writes

w4 m® = ()} (n)’ + (m")’. (48)
For the same number of half waves in the x;-direction (m" = m), Eq. (48) may be written as

n_n (49)
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Mode 1 Mode 2 Mode 3
(11) {12) (21)
9.3306 24,9710 35.9987

b 4
N\

Mode 6
(13)
B9.5926

Mode 7 Mode 8 Mode 9
(32) (23) (41)
LLE7 .. 02352 125.77350
N v Y
N el

Fig. 7. First nine mode shapes of S—-F-S-F rectangular plate (y =2, 6 =0.1, v=10.3).

Eq. (49) may now be used to describe the modes of plates with the same frequency parameters as their
aspect ratios and their number of half waves in the x,-direction vary. As an example, the 24 mode for
n=0.5 and § = 0.15 (with B = 62.6035) can be interpreted as the 21 mode for #* =2, or as the 22 mode
for #* = 1 with the same ¢ and f, by rewriting Eq. (49) in the form

n_m_4_1_2_ (50)
noon 2 05 1

Obviously many divided numbers have the same ratio as expression (50) and there are many values of n
and n which satisfy Eq. (49). Hence considerable additional results regarding other aspect ratios not cov-
ered in Table 1, can be obtained from the same table. For example the 31 and 32 modes for # = 1.5 give the
frequency parameters for the 36 and 31 modes of plates having " = 0.25 and " = 3, respectively.

To describe the modes of identical frequencies for #* =#, Eq. (48) can be written as

- 51
n* n 1 (51)
Upon making use of this equation for # = 1, one may writes
m m* 1 2 3
e A (52
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Mode 1 Mode 2 Mode 3
(11) (21) (12)
21.1869 45,5725 81.0357

g84.0785

A

Mode 7 Mode 8 Mode 9
(32) (42)

137.5355 180.1779

Fig. 8. First nine mode shapes of S—-C—S—F rectangular plate (1 =2, 6 =0.1, v=0.3).

Table 7
Frequency parameters for thick plates with different boundary conditions (1 = 0.5, § = 0.2)
Boundary conditions Mode sequences

1 2 3 4 5 6 7 8 9
S-F-S-F 9.1061 10.7218 15.5826 23.2429 31.6538 32.8922 33.4360 37.2004 43.8579
S-S-S-F 9.5902 13.3463 20.3423 30.1061 32.0344 35.1634 41.0123 41.9810 49.1758
S-C-S-F 9.6782 13.9934 21.5678 31.6896 32.0545 35.3839 41.5112 43.6674 49.9152
S-S-S-S 11.3961 17.5055 26.7944 33.5896 38.3847 38.3847 45.8969 51.5392 55.5860
S-C-S-S 11.8061 18.6005 28.3427 33.7085 38.7801 40.0930 46.5758 53.1956 56.4568
S-C-S-C 12.3152 19.7988 29.9258 33.8397 39.2032 41.7813 47.2796 54.8076 57.3380

Thus within the nine lowest values of f§ for # = 1, the coupled modes are (12, 21), (13, 31) and (23, 32).
Eq. (48) may also be used to describe the modes of identical frequencies with same number of half waves
in the x,-direction (n* = n). In this case Eq. (48) can be expressed as

—=—=n. (53)
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As an example, for n =1 Eq. (53) may be given as

ﬁ:m_zlzl:%:...‘ (54)
U 12
Thus one may conclude that, the 11 mode for # =2 and the 21 mode for #* = 1 have an identical fre-
quencies. In order to interpret these modes, imagine a vibrating plate having # = 1 and taking into consid-
eration that, the 21 and 12 modes are the coupled modes. The 12 mode has a nodal line along X, = 1/2.
Keeping the length fixed and halving the width, the aspect ratio would be doubled. Therefore, the 11 mode
for the plate having # =2 can be interpreted as whether the 12 or 21 modes of plate having " =1, all
vibrating with an identical frequency.
Consider now two S—-S-S-S plates with different frequency parameters. Using Eq. (25b) one obtains

2 =nwtnt +mPnd, (o) = ()7 (p) + (m*)*n. (55a,b)

Combining Egs. (55a) and (55b) for the same number of half waves in the x,-direction (n" = n), gives

“o_mo_n (56)

04} m n

Knowing the ratio 1%/5, the frequency parameters of two plates can be related as

%2 2 4 _ 77_* 22 a az i
) <a1+,/a2+(ﬁ*)2>—(n)ﬁ<1+,/2+ﬁ2>7 (57)

where

71 71
= (——+1 == (—=—=1).
@ =15 <K2v1+ ), @ =15 (K2v1 ) (58a,b)

Once again because the conditions along evenly spaced nodal lines are the same as those of simply sup-
ported edge, additional results for other # may be obtained from Table 1. For example, consider the S—
S-S-S plate having =2 and 6 =0.15. The 21 mode has a nodal line along X; =1/2 and has
p = 62.6035. Considering only one-half of the plate in this mode, one then has an S-S-S-S plate with
n" =1 vibrating in the 11 mode. Substituting for a;, a,, f and 5*/n into Eq. (57) yields, * = 18.3661 (al-
ready given in Table 1).

Alternatively by selecting n* = 1, Eq. (56) for a plate having n = 2 and vibrating in 21 mode may be writ-
ten as

o (59)

which in turn indicates that 21 mode for # = 2 corresponds to the 11 mode for #* = 1. Similarly by selecting
n*=5/6 and § = 0.15 the 31 mode for # = 2.5 yields the fundamental (11 mode) frequency for the selected
plate, vibrating with 8" = 15.7191 (not covered in Table 1).

Finally, it is pertain to mention that as shown in Appendix B, Eq. (27) for a; < mn has no roots.

4.1.2. S-C-S-S and S-C-S-C

The position of the nodal lines along the x, axis for the S-C-S-S plate may be obtained from Eq. (38), by
simply equating the X, dependent function to zero. As an example the position of the nodal lines within the
first nine modes whose frequency parameters for =2 and 6 = 0.1 are listed in Table 2 may be found to be
at X, =0.4599, 0.4665, 0.4737, 0.4799 for 12, 22, 32 and 42 modes, respectively.
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A consequence of these results is that the nodal lines lying in the x;-direction are not evenly spaced, due
to nonsinusoidal form of X, dependent function. Thus the conditions along these nodal lines are not the
same as those of a simply supported edge.

Unlike the nodal lines lying in the x;-direction, those lying in the x,-direction are evenly spaced. This is
because the x; dependent function is sine function exactly.

Additional results for vibration frequencies of S—C-S-S plates can be found quite simply from the
xy-antisymmetric results for S—-C-S-C plates given in Table 3. Inspecting data given in Tables 2 and
3, one observes that 14 mode for an S—-C-S-C plate having 1 =0.5 and 6 =0.15 corresponds to the
12 mode for an S-C-S-S plate having =1, 6 =0.15 and the same value of frequency parameter,
f=46.9422.

In order to interpret this observation one may imagine an S—-C-S—C plate having # = 0.5 and 6 =0.15
vibrating in the 14 mode. For the 14 mode of a plate with the same specification as above the position of the
nodal lines lying in the x;-direction may be found from Eq. (39) to be at X, = 0.2697, 0.5, 0.7302. Unlike
the S—S-S-S plate, these nodal lines are not evenly spaced. But the nodal line at position X, = 0.5 is one of
geometrical symmetry. As a result the conditions along the nodal line positioned at X, = 0.5 are the same as
those simply supported edge only.

Keeping the length of plate fixed and halving the width, the aspect ratio would be doubled. Thus one has
an S—C-S-S plate with # = 1 vibrating in the 12 mode and having the same frequency parameter as the 14
mode of S—C—S-C plate with n =0.5.

Accordingly additional results for S-C-S-S plates having n = 0.8, 4/3, 3, 4 and 5 may be obtained from
the x,-antisymmetric data given in Table 3. Similarly additional results for x,-antisymmetric modes of S—C—
S—C plates having n = 0.2, 0.25, 1/3, 0.75 and 1.25 can be gleaned from the data given in Table 2.

Finally as far as the existence of the eigenvalues with a; < mn is concerned, as shown in Appendix B,
Egs. ((28), (35¢) and (35d) for oy < mz have no roots.

4.1.3. S~S-S-F, S—~F-S-F and S—-C-S-F

In Appendix B, it is found that as far as the x,-symmetric modes of S—-F—-S—F plate are concerned, there
always exists one x,-symmetric mode for each value of m such that o; < mm. It is also shown that the char-
acteristic equations given for S—-S-S-F, S—C-S-F and x,-antisymmetric modes of S—F-S—F plates in case
oy <mmn have roots, if a certain condition established individually for each case to be satisfied.

The lowest integer values of m satisfying the corresponding condition for each case are listed in
Table 8 for different values of # and 6. From the results presented in this table one observes that as g
increases, m also increases. The lowest value of m corresponds to #=0.4 and its highest value
corresponds to n = 2.5. Inspection of data given in Table 8, also reveal that, except for the x,-symmetric

Table 8
The lowest integer values of m satisfying the condition f(*) < g(f")

S-S-S-F S-F-S-F S-C-S-F
n 04 05 2/3 1 1.5 2 25 04 05 2/3 1 1.5 2 25 04 05 2/3 1 1.5 2 2.5
0 m = m = m>=
0.01 3 4 5 7 10 13 16 6 7 9 13 18 23 28 3 4 5 7 10 13 16
0.05 3 4 4 6 8§ 10 12 5 6 7 0 15 19 23 3 4 5 6 g8 11 13
01 3 3 4 5 8 10 12 5 5 7 00 14 19 24 3 3 4 6 8 10 12
0.15 3 3 4 5 7 10 12 4 5 7 10 15 19 22 3 3 4 5 7 10 12
02 3 3 4 5 7 10 12 4 5 7 100 14 18 20 3 3 4 5 7 10 12
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modes of S—-F-S-F plate, no frequencies of o; <mn type appear among the first nine, for the values of 5
used in Tables 4-6.

It is also interesting to note that similar to S-S-S-C and S—C-S-C plates, additional results for S—-S-S-F
plate may be obtained from the x,-antisymmetric data for S-F-S—F plate and vice versa.

Table 9

Comparison study of frequency parameters f = wa’ \/ph/D for square Mindlin plates with S-S-S-S boundaries

0 Method Mode sequences
1 2 3 4 5 6 7 8 9
0.001  Leissa (1973) 19.7392  49.3480  49.3480  78.9568  98.6960  98.6960  128.3049  128.3049  167.7833
Liew et al. (1993a)  19.7392  49.3480  49.3480  78.9568  98.6951  98.6951  128.3030  128.3030  167.7780
Liew et al. (1995a)  19.7392  49.3480  49.3480  78.9568  98.6960  98.6960  128.3050  128.3050 -
Present® 19.7391  49.3475  49.3475 789557  98.6943  98.6934  128.3019  128.3019  167.7782
0.1 Liew et al. (1993a)  19.0651 454831 454831 69.7939  85.0385  85.0385 106.6840  106.6840  133.6220
Present” 19.0649 454826 454826  69.7943  85.0380  85.0380  106.6836  106.6836  133.6212
0.1 Liew et al. (1995a)  19.0582 454495 454495  69.7189  84.9279  84.9279  106.5130  106.5130 -
Present® 19.0584 454478 454478  69.7166  84.9263  84.9263  106.5154  106.5154  133.3705
0.1 Liew et al. (1995b)  19.0898  45.6193  45.6193  70.1038  85.4876  85.4876  107.3710  107.3710 -
Present® 19.0840 455845 455845 70.0219 853654 85.3654 107.1775 107.1775  134.3586
0.2 Liew et al. (1993a)  17.4485 38.1519  38.1519 55.1504 65.1453  65.1453 78.6973 78.6973 94.7660
Present” 17.4485  38.1521  38.1521  55.1500  65.1452  65.1452 78.6969 78.6969 94.7658
0.2 Liew et al. (1995b)  17.5264  38.4826  38.4826 55.7870  65.9961  65.9961 - - -
Present® 17.5055  38.3847  38.3847  55.5860  65.7193  65.7193 79.4758 79.4758 95.8088
2 Shear correction factor K> = 0.86667.
® Shear correction factor K> = 5/6.
¢ Shear correction factor K = n%/12.
Table 10
Comparison study of frequency parameters f = wa® \/ph/D for square Mindlin plates with S-C-S—S boundaries
0 Method Mode sequences
1 2 3 4 5 6 7 8 9
0.001  Leissa (1973) 23.6463  51.6743  58.6464  86.1345 100.2698  113.2281  133.7910 140.8456  168.9585
Liew et al. (1993a) 23.6456  51.6733  58.6452  86.1330  100.2680  113.2250  133.7870  140.8410  168.9540
Present® 23.6461  51.6737 58.6455 86.1329  100.2679  113.2253  133.7874  140.8414  168.9533
0.1 Liew et al. (1993a)  22.3882  47.1037 52.1500  74.1049 85.8764 93.2273  109.2590  112.7410  134.0850
Present” 223886  47.1039  52.1496  74.1051 85.8759 93.2267 109.2595  112.7410  134.0847
0.2 Liew et al. (1993a)  19.7037  38.9474 41.4474  56.8361 65.4463 67.9364 79.4849 80.4531 94.8943
Present® 19.7032 389470 41.4472  56.8361 65.4459 67.9364 79.4849 80.4527 94.8942

2 Shear correction factor K> = 0.86667.
® Shear correction factor K? = 5/6.
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4.2. Comparison with known results

Since the present results are obtained based on using the exact characteristic equations for each case, the
comparison with the other known results which are based on using the approximate methods may not be
relevant. However to validate the accuracy of the present prediction a comparison has been carried out for
thin (6 = 0.001) square rectangular plate solutions.

In Leissa’s well-known paper (Leissa, 1973), the exact characteristic equations and their vibration fre-
quencies were presented for thin rectangular plates with two opposite edge simply supported. The first nine
frequency parameters listed in Tables 9-14 for all considered six cases have been compared with those exact
values (Leissa, 1973). They show good agreement.

In addition, it is not difficult to show that all exact characteristic equation formulas given for thick plate
in present study lead to those given in (Leissa, 1973) by taking into account the relevant assumptions for

Eztr)rll;;rlison study of frequency parameters f§ = wa’ \/ph/D for square Mindlin plates with S-C-S—C boundaries
0 Method Mode sequences
1 2 3 4 5 6 7 8 9
0.001  Leissa (1973) 28.9509  54.7431  69.3270  94.5853  102.2162  129.0955 140.2045 154.7757  170.3465

Liew et al. (1993a) 28.9515 54.7418  69.3261 94.5834  102.2140  129.0910  140.2010  154.7700  170.3460
Liew et al. (1995a)  28.9475  54.7467  69.3241  94.5804  102.2100  129.0940  140.1980  154.7750 -
Present® 28.9505  54.7423  69.3257 94.5831 102.2141  129.0914  140.2002  154.7700  170.3410

0.1 Liew et al. (1993a)  26.6687 49.1131  59.2097  78.8127 86.8436  101.3720  112.0590  118.9220  134.5970
Present” 26.6683  49.1129  59.2101  78.8129 86.8440  101.3717  112.0584  118.9220  134.5952

0.1 Liew et al. (1995a)  26.6479  49.0618  59.1189  78.6805 86.7242  101.1540 111.8520 118.6620 —
Present® 26.6448  49.0625 59.1183  78.6831 86.7203  101.1523  111.8481 118.6574  134.3358

0.2 Liew et al. (1993a) 223596  39.8525 44.6155 58.5504 65.7701 70.5627 80.2942 82.1615 95.0285
Present” 223593 39.8525 44.6154  58.5501 65.7703 70.5622 80.2939 82.1610 95.0283

2 Shear correction factor K> = 0.86667.
® Shear correction factor K* = 5/6.
¢ Shear correction factor K> = n%/12.

Table 12
Comparison study of frequency parameters § = wa® \/ph/D for square Mindlin plates with S—-F-F-F boundaries
1 Method Mode sequences
1 2 3 4 5 6 7 8 9
0.001  Leissa (1973) 11.6845  27.7563  41.1967  59.0655  61.8606  90.2941  94.4837  108.9185  115.6857
Liew et al. (1993a)  11.6925  27.7602  41.1987  59.0656  61.8617  90.2931 944817 108.9170  115.6840
Present® 11.6837  27.7523  41.1943  59.0587  61.8535  90.2885  94.4684 108.9084 115.6759

0.1 Liew et al. (1993a)  11.3727  26.1545  38.2862  53.2465  55.6231  78.3686  81.0758 92.2097 97.3548
Present” 11.3731  26.1544  38.2860  53.2462  55.6233  78.3663  81.0755 92.2072 97.3551

0.2 Liew et al. (1993a)  10.6987  23.1531  32.7158  43.5743  45.3054  60.7375  62.3285 69.5787 72.7893
Present” 10.6981  23.1532  32.7157  43.5740  45.3051  60.7370  62.3281 69.5788 72.7892

2 Shear correction factor K> = 0.86667.
b Shear correction factor K2 = 5/6.
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Eztr)rlli)alfison study of frequency parameters = wa® \/ph/D for square Mindlin plates with S—~F-S—F boundaries
0 Method Mode sequences
1 2 3 4 5 6 7 8 9
0.001  Leissa (1973) 9.6314  16.1348  36.7256  38.9450  46.7381  70.7401  75.2834  87.9867  96.0405

Liew et al. (1993a)  9.6406  16.1417  36.7297  38.9474  46.7395  70.7394  75.2834  87.9865  96.0401
Liew et al. (1995a)  9.6327  16.1368  36.7248  38.9455  46.7326  70.7355  75.2853  87.9875 -
Present® 9.6311 16.1313  36.7161 38.9433  46.7317  70.7222  75.2692  87.9819  96.0288

0.1 Liew et al. (1993a)  9.4403 15.3897  33.8597  36.3576  42.7926  62.1499  66.1964  76.6355  82.4240
Present” 9.4406 153892  33.8599  36.3569  42.7926  62.1466  66.1965  76.6329  82.4088
0.1 Liew et al. (1995a)  9.4354  15.3867  33.8429  36.3300  42.7551 62.0798  66.1362  76.5388 -
Present* 9.4388 153837 33.8407  36.3338  42.7604  62.0840  66.1366  76.5404  82.3031
0.1 Liew et al. (1995b)  9.4462  15.3995 339129  36.4376  42.8874  62.3374  66.4096  76.9730 -
Present” 9.4458 15.4054  33.9161 36.4246  42.8870  62.3304  66.3720  76.9042  82.7190
0.2 Liew et al. (1993a)  8.9833 14.0938  29.1361 31.2709 359599  49.5612 524796  59.6164  63.2681
Present” 8.9830  14.0939  29.1363  31.2704  35.9599  49.5606  52.4793  59.6159 = 63.2657
0.2 Liew et al. (1995b) ~ 9.0010  14.1224  29.2634  31.4722  36.1731  49.9353 529119
Present® 8.9997  14.1341 29.2558  31.4338  36.1646  49.8953  52.8012  60.1064  63.7961

4 Shear correction factor K = 0.86667.
® Shear correction factor K> = 5/6.
¢ Shear correction factor K> = n%/12.

Table 14
Comparison study of frequency parameters f§ = wa® \/ph/D for square Mindlin plates with S-C-S—F boundaries
J Method Mode sequences
1 2 3 4 5 6 7 8 9
0.001  Leissa (1973) 12.6874  33.0651 41.7019 63.0148 723976  90.6114  103.1617 111.8964  131.4287
Liew et al. (1993a)  12.6854  33.0651  41.7020  63.0135  72.3955  90.6099  103.1580  111.8940  131.4250
Present” 12.6862  33.0600 41.6993  63.0064 72.3896  90.6054  103.1439  111.8848  131.4175

0.1 Liew et al. (1993a)  12.2492  30.4083  38.6346  55.8018  62.7263  78.5285 85.8942 93.6852  105.6140
Present” 12.2492  30.4086  38.6342  55.8017  62.7259  78.5265 85.8934 93.6825  105.6138

0.2 Liew et al. (1993a)  11.3619  25.7547  32.8934 447241  48.5022  60.7948 64.0419 70.0752 75.3031
Present® 11.3619  25.7545 328937 44.7244  48.5026  60.7949 64.0421 70.0755 75.3026

2 Shear correction factor K> = 0.86667.
® Shear correction factor K? = 5/6.

thin plates. This can be directly achieved for plate with no free edge by letting K>— inf, which suggests
Cl = C2 =1.

Further it is found that the first nine frequency parameters calculated for d = 10~ up to three decimal
and more often up to four decimal figures are the same as those given in (Leissa, 1973). This in turn verifies
that as J gets insignificance the present exact characteristic equations given for thick plates have ability to
predict the same results as those obtained in (Leissa, 1973) by using the exact characteristic equations of
thin plates.
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In Tables 9-14 the frequency parameters are also compared with those presented in Liew et al. (1993a)
that used a shear correction factor K> = 5/6 for analysis with two dimensional Rayliegh-Ritz method. Fur-
ther comparison studies have also been carried out in Tables 9 and 13 with existing values given in Liew
et al. (1995a) and Liew et al. (1995b) obtained by using boundary characteristic orthogonal polynomials
and three dimensional analysis, respectively. A shear correction factor of K> = 7%/12 was assumed in Liew
et al. (1995a). The frequency parameters listed for S-C-S—C case in Table 11 are also compared with avail-
able data given in Liew et al. (1995a). It can be observed that for all six considered cases compared in Tables
9-14 the close agreement exist. This further justifies the validity of the present results.

5. Conclusions

In this work the Mindlin plate theory is used to investigate the free vibrations of thick rectangular plates.
The exact characteristic equations are derived for the six cases having two opposite sides simply supported.
The six cases considered are namely S-S-S-S, S-C-S-S, S-C-S-C, S-S-S-F, S-F-S-F and S-C-S-F
plates. The transverse deflections are also given in closed form for all six cases, from which the modal
shapes and counter plots at any desired frequency parameters can be graphically displayed.

Accurate frequency parameters are presented for different thickness ratios and aspect ratios for each
case. These frequency parameters can be regarded as an exact database for each of considered cases and
may be of worth to someone desiring to investigate the accuracy of an approximate method on some of
these problems. The effect of boundary conditions, variation of aspect ratios and thickness ratios on the
frequency values are examined and discussed in detail. Investigations are also carried out regarding nodal
lines, obtaining additional results for other aspect ratios not included in presented tables, existence of the
eigenvalues such that o; < mn and some specification of individual cases. Finally based on comparison with
previously published results the validity of the presented results are established.

Appendix A. Different possible solutions for Eqgs. (12a)—(12c)

In order to solve Egs. (12a)—(12c) the method of separation of variables may be used. Thus, by selecting
W;=f{X1)g: (X») (i=1,2,3) we obtain:

fin =Hi5fs, gim = +ijg; (A.1LA2)
where 12 and /11.2 are separation constants. It can be easily shown that by examining the boundary condi-
tions, a solution to the equations f;1; = u?/; are not suitable for satisfying the boundary conditions when

two opposite edges at X; = 0 and X; = 1 are simply supported. Hence, the following solutions to Egs. (A.1)
and (A.2) may be selected

fi(X1) = asin X | + b; cos X | (A.3)
g;(X2) = ¢;sin LX) + d; cos . X, (A4)
g;(X2) = ¢} sinh 4,X, + d; cosh 2,.X>. (A.5)

Close examination of Egs. (11c)—(11e) reveals that
12K
a >0, o;>0, o3>0, for ﬁ>?\/v—l, (A.6)
and

12K
>0, o5<0, o3<0, for /3<7\/ﬁ. (A7)
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On assumption that o > py, o > u, and a3 > 3 for conditions presented by expression (A.6), one set of
solutions may be expressed as:

Wl = [Al Sil’l(j.IXZ) + A2 COS(}ule)] sin(,ule) + [Bl sin(ile) + Bz COS(A]Xz)] COS(,Ule), (Ag)
W, = [A3sin(1:X3) + A cos(2:X3)] sin(pyX 1) + [Bs sin(4:X2) + By cos(4:X2)] cos(u,X 1), (A.9)
W3 = [Assin(23X2) + Ag cos(A3X2)] cos(p3X 1) + [Bs sin(43X3) + Bg cos(A3X,)] sin(u; X 1), (A.10)
where
oF =G+, b=+, o=+ A (A.11-A.13)
Keeping conditions same as given by expressions (A.6), the next three sets of solutions may be written as:
W1 = [Al sin(ile) + Az COS(}Vle)] sin(,ule) + [Bl sin(/lle) + Bz COS(A]Xz)] Cos(,ule), (A14)
Wy = [A;sin(AaX2) + Aa cos(AX2)] sin(p,X 1) + [B; sin(4aX2) + B cos(AaX2)] cos(i,X 1), (A.15)

W3 = [4s sinh(13X ) 4+ A cosh(43X5)] cos(psX1) + [Bs sinh(43X5) + Bs cosh(23X5)]sin(ps X 1), (A.16)

where
o > Uy, O >y, 03 < U3 (A.17-A.19)
o =+t ok =3+, o= — P, (A.20-A.22)
Wi = [A;sin(41.X2) + 42 cos(41.X2)] sin(p, X 1) + [By sin(41.X2) + By cos(41.X2)] cos(u, X 1), (A.23)

W, = [A3 sinh(4,X,) + Ay cosh(A2X5)] sin(p,X 1) + [B; sinh(4,X,) + By cosh(AX3)] cos(u,X 1),  (A.24)

W3 = [dssin(A3X2) + Ag cos(A3X2)] cos(usX 1) + [Bs sin(A3X2) + B cos(A:3X,)] sin(u; X 1), (A.25)
where

o > py, o < Uy, 03 > U (A.26-A.28)

o4 =45+, o= — s, 0=+, (A.29-A31)
and

Wy = [A;sin(41X2) + 42 cos(41.X2)] sin(p, X 1) + [By sin(41.X2) + By cos(41.X2)] cos(u, X 1), (A.32)

W, = [A3 sinh(A,X3) 4+ A4 cosh(2,X5,)] sin(p,X 1) + [Bs sinh(4,X5) + By cosh(AX5)] cos(u,X1),  (A.33)

W3 = [Assinh(A3X,) + Ag cosh(A3X2)] cos(u3X 1) + [Bs sinh(43X2) 4+ B cosh(2;X,)] sin(us X 1), (A.34)
where

o >y, 0 <, 03 < U3 (A.35-A.37)

=124+, =18 -, ok =1 -t (A.38-A.40)

To satisfy the boundary conditions when two opposite edges at X; =0 and X; = 1 are simply supported
we should write:

My = Hp = U3 = mT. (A.41)
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It is not difficult to show that o3 > a, by rewriting Eq. (11e) as:

2 2
% _ 1227Kza% (A.42)
> B
and showing that the right-hand side of Eq. (A.42) is always greater than unity. Thus, the set of solu-
tions given by Egs. (A14)—(A16) to maintain conditions as shown by expressions (A17)-(A19) may be
eliminated.

As far as the conditions presented by expressions (A.7) are concerned, the set of solutions given by Eqgs.
(A.32), (A.33), (A.34) are valid by ignoring inequalities (A.36) and (A.37). Thus, there will exist three sets of
solutions for f# > 12K,/v;/ % and one set of solutions for f < 12K, /v /6% if oy > py. The solutions concern-
ing o < p; have been dealt with separately in Appendix B.

Selecting v = 0.3, K% =0.86667 and finding the values of § = 12K\/ﬁ/52 for the values of 6 = 0.01, 0.05,
0.1, 0.15 and 0.2 as listed in Tables 1-6, we obtain § = 66091, 2643.64, 660.91, 293.738 and 165.227, respec-
tively. Close inspection of frequencies listed in Tables 1-6 reveals that within the range of frequencies con-
sidered for each value of o, except three listed values of f, the rest of listed corresponding frequencies are
less than the values of 12K,/v;/ 6% calculated for each corresponding value of d. This in turn suggests that
the best set of solutions within the range of frequencies considered in Tables 1-6 is the set given by Egs.
(13a)—(13c). Obviously, for these three values of f§ appearing as 4, with corresponding values of 6 =0.2
and # = 2.5 in Tables 1-3, inspection of values of a, and o3 could lead to selection of appropriate sets of
solutions.

In order to obtain the characteristic equations and the nondimensional transverse displacements from
Eqs. (18)~(24) and (37)—(46c¢), respectively for f > 12K, /v;/ o%, depending on the values of a, and o5 the
following replacements could take place:

oy > W, o3> py (replacing A, and /; by il,and i/; respectively), (A.43)

oy <y, o3>y (replacing A3 by il;), (A.44)
and

oy <y, o3 <3 (no modification is required). (A.45)

Appendix B. On the existence of eigenvalues such that a; < mn

In order to investigate the existence of eigenvalues such that «; < m, it is convenient to express o, and o3
in terms of o;. Upon making use of Egs. (11c)—(11e), one may write

o, 12K7

L=aft -, &= Woﬁ(mﬁz — o), (B.1,B.2)

where a; is given by Eq. (58a). Thus M, 2, 73, C; and C, are given by Egs. (26), (25¢), (25d), (11a), and
(11Db), respectively, may be written as

N 1 7 1/
)vl = E _OC% + szEZ, j‘z = H OC% - alﬁz + m2n27 (B3’B4)
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., Ko S mAm2 R
jy =28 1202 — ay ) + PO (B.5)
npo ! K*o?
S S A p . (B.6,B.7)
12K* v, 12K%(a 7 — o),

The nondimensional frequency parameter may also be solved in terms of «; by using Eq. (11c¢), to give

Z[aloﬁ +1-— \/(61105% + 1)2 — (af — a3)of
§ =

2 ’ (Bg)

(ai — a3)
where a; is given by Eq. (58b). Investigation of the existence of eigenvalues may now be given below for
each individual cases.

Case 1 S-S-S-S
Eq. (27) may be written as

£ (B) = sinh /, sinh 4, sinh /5 = 0, (B.9)

where for a given values of K, #, d, v and m, 1, 72 and J; are all functions of f according to Egs. (B.3)—(B.5).
At f=0, 0y =0, =0, /4y = A = mn/n and 13 = V12K* + m>n26*/5d. Therefore, sinh i, = sinh 4, > 0,
sinh43 >0 and f(0) > 0. As f increases, f(f/) remains greater than zero and becomes zero at oy = mu.
The corresponding nondimensional frequency parameter f* at oy = mzn may be given by replacing o; by
mmr in Eq. (B.8). Thus, () > 0 for all f§ in the range 0 < 8 < 8%, therefore no eigenvalues can exist.
Case 2. S—-C-S-S

Eq. (28) can be rewritten as f(f) = g(f), where

tanh /, @ tanh/, tanh 4,
ERYON ki , B.10
£8) ( R R ) (8.10)
tanh / 2 tanh/, tanh /
g(p) = €| 52 - S RAEERR ) (B.11)
A2 n 11),2/L3 tanh A3

Comparing Eqs. (B.3) and (B.4), and taking into account the fact that for all >0, o3 = ap? — a2 < 0.
Thus o? > a, %, and consequently 4, > /; for all > 0. Similarly, comparison of Eqgs. (B.6) and (B.7) clears
that C, > C for all f>0. At f =0, C,=C; =1 and f(0) = g(0) which is a trivial root. As a result of
C, > C) one may conclude that the second term on the right-hand side of Eq. (B.10) is greater than the sec-
ond term on the right-hand side of Eq. (B.11) for all > 0. Furthermore due to the fact that 4, > 4, it is not
difficult to show that C,tanh 4,/4;, > C)tanh ,/4, as f§ increases. Thus, f(f) > g(f) for all > 0, therefore
no eigenvalues can exist.

Case 3. S-C-S-C

Consider first the x,-symmetric modes. Eq. (35¢) is rewritten as f(5) = g(f5), where

}L] 11 ,uz ;t?a
= — tanh— — h—= B.12
f(p)=0c, (2 tan PR Ty tan 5 | ( )

SN L S 3
g(p) = C2<2 tanh > "2 tanh 2). (B.13)
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But 7, > 41 and G, > C, for all > 0. For = 0, (0) = g(0), which is a trivial root. As f8 increases, 21/2 and
tanh 4, /2 both decrease, and 4,/2 and tanh(/,/2) both increase. At o) = mn, 4;/2 = tanh(4,/2) = 0. Thus
f(B) < g(p) for all B in the range 0 < < 8%, and no x,-symmetric eigenvalues can exist.

Eq. (35c,d) for the x,-antisymmetric modes is similar to the Eq. (28) of case 2. Therefore, no x;-antisym-
metric eigenvalues can exist. The proof is the same as case 2.
Case 4. S-S-S-F

Eq. (30) may be rewritten as f(f) = g(f8), where

f(ﬁ) = 2(C1 — Cz)flzl,tzi';(l — V) tanh 13 — C2L1L2 tanh /12/12, (B14)

g(B) = C\LsLytanh 7y /4. (B.15)
For =0,

£(0) = g(0) = 2m’n*y(1 — v) tanh(mn/n) > 0. (B.16)

Furthermore, letting «; = mnv/1 — v gives f(f;) >0 and g(f;) = 0, where f; is the corresponding nondi-
mensional frequency parameter at o, = mny/1 — v. Therefore, a root of equation (30) will exist in the inter-
val Bi< < B*if
f(B) <g(p). (B.17)

For a given values of K, 1, 6 and v expression (B.17) is a function of m only. Thus the lowest value of m
satisfying the condition for the existence of eigenvalues may be estimated. The nondimensional transverse
deflection may also be obtained from Eqs. (41) and (42a)—(42c) by simply replacing 4; and L, by i4; and Ly,
respectively, where i = v/—1.
Case 5. S—-F-S-F

Consider first the x,-symmetric modes. Eq. (36¢) is rewritten as f(f5) = g(f8), where

tanh(4,/2) tanh(4,/2)

5 J 2
f(B) =2(Ci — C)*w?iia(1 —v) — C2L1L2/1—1 tanh 2>,
2

tanh(4;/2)
g(B) = CiLsLy tanh(4>/2). (B.18,B.19)
For =0,
£(0) = g(0) = 2m*z*(1 — v) tanhlz—:; > 0. (B.20)

Furthermore, letting o« = mnv/ 1 — v gives f(f;) > 0 and g(f5;) = 0. Thus a root of equation (36¢) will exist
in the interval 8, < B < B* if f(B") < g(B*). Upon letting o; = mmn, f(B) = 0 and g(B) > 0. Therefore, the x,-
symmetric eigenvalues will always exist, and they will exist in the interval f; < g < B*.

Eq. (36c,d) for the x,-antisymmetric modes can be rewritten as f(f) = g(f), where
tanh(4,/2)

P (B.21)

A
S(B) = 4(Cy = Co)n*iAs(1 = v) tanh 5 — 2CaLi Ly

tanh(/l /2)

1

g(B) = 2C\LsLy (B.22)
For =0,

£(0) = g(0) = dm*m*p(1 — v) tanh <’;’1’;> > 0. (B.23)
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At oy = mnv1 —v, f(f1) >0 and g(f;) =0. Thus a root of equation (36c,d) will exist in the interval ;<
B < p"if f(B*) < g(f"). The nondimensional transverse deflection for both x,-symmetric and x,-antisymmet-
ric modes may also be obtained from Egs. (43) and (44a)—(44f) by simply replacing 4, and L4 by i4; and Ly,
respectively, where i = v/—1.
Case 6. S—-C-S-F

Eq. (33) may be rewritten as f(f) = g(f8), where

F(B) = AP [2(Cy — Co)’u*(1 = v) + C2LsLy — C2L,Ly] cosh /, cosh 4, cosh 3
2
+(C, — Cl)CZT{[L 1Ly — 2(1 — v) 233" sinh J, sinh /5
+ /1223172 [Ll(l — V) — 2L2]} cosh ;11

2 ~ ~ ~
+(Cy— O g—{[L3L4 +2(1 — v)J 22" sinh J; sinh /s
1

— ;11}41’]2 [L3(1 — V) + 22:4]} cosh /12 —+ C1C2/137]2(L2L3 — le4) cosh )»3, (B24)
~ hi h A
g(B) = CiCrlan? <L3L4) — LiLyJ )sm i siahdz osh 3. (B.25)
)\,1 /LZ
For f=0
N 22 §? 2
£(0) = g(0) = dm*n*y(1 — v)v mim2st + 12K2sinh2% cosh mr 1575+ 12K ) (B.26)

Furthermore, letting oy = mmyv'1 — v gives f(ff;) > g(p1). Therefore, a root of equation (33) will exist in the
interval f; < f < p" if f(f") <g(B"). The nondimensional transverse deflection can also be deduced from
Egs. (45), (46a)—(46c) by simply replacing 4, and L4 by i4; and L4, respectively, where i = v/ —1.
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